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Abstract: In recent years, numerous studies have been conducted to obtain by extracting the most accurate 
estimate of the main parameters in a given field. The techniques were diverse, and the main purpose was to 
identify how information can become useful knowledge. My area of interest, sports prediction, is constantly 
evolving, so many organizations have begun to focus on these methods that can provide them with valuable 
data. Therefore, this article is actually a literature review on how sports data is exploited. On this basis, I 
can present an overview of what has been studied, research proposals, topics addressed, algorithms and 
technologies used and future opportunities. Analysing these discoveries I want to offer a mining potential in 
this field and to attract as many researchers as possible to research the subject of sports predictions. 
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Introduction 
 

The concept of prediction captures a new facet of the digital age that facilitates 
revenue growth in various fields. Sports prediction is usually treated as a classification 
problem, with only one class (win, lose or draw) to be predicted Prasetio and Harlili (2016). 
The use of a structured experimental approach to the problem of predicting sports results 
is useful for obtaining the best possible results with a data set. Predictive models can also 
be used to build data products, for this purpose there is a system of recommendations that 
could help clubs make different decisions. Scientific research has not only tried to identify 
a model applicable to a sports club. After identifying the framework, the researchers tried 
to generalize the model so that it could be used by as many clubs in different countries of 
the world. In this article I want to understand how the prediction of results is thought and 
the generalization of predictors so that they can be used on a large scale. Moreover, I will 
identify which are the main ones directions regarding sports analysis and what are the 
models, respectively the variables used in the analysis. 
 
Research background 
 

The beginnings of sports analysis focused mainly  on the analysis  that referred to 
the proceeds from the sale of  tickets to matches. In this regard, I identified a two-way 
specialized studies: event management (which includes analysis of ticket sales, 
participation of fans in stadium matches) and sports performance of players. The first 
category can be divided into two other directions as follows: the analysis of tickets sales at 
matches and the presence of fans at the stadium. The presence at the stadium is a major 
source of income for all sports teams, theoretical and empirical research on the demand for 
participation has been an  integral  part  of  the  sports  economy.  The  two  oldest  empirical  
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studies  of determinants were made in the 1970s by Noll (1974) and Demmert (1973). Each 
study carefully explained a variety of factors that could change demand, including control  
variables  for  local  income,  the  age  of  the  stadium,  the  substitutes  of availability, the 
success of the franchise and the population of the local market. 

Many studies have been conducted on participation in matches. It will be noticed 
that most of them are econometric studies whose objective is to highlight which are the 
factors determinants of demand. As for the variables analyzed in order to obtain as high an 
accuracy as possible, the number of tickets that would be sold for a match, the research 
shows that the number of points scored by home and away team in the previous five 
matches is taken as a significant factor for participating in matches. And in 2007, in another 
article in the domain are investigating the impact of big players that are proving to have an 
impact on increasing match attendance (Brandes et al., 2007). As we could observe at the 
level of studies there are two types: controllable variable (opponent, match day, ticket 
price) and variables that cannot be controlled (weather, atmospheric pressure, the wind). 
And, for this reason, it will be interesting to obtain information about these variables and 
whether there are really significant connections with total receipts from ticket sales to 
matches. 

Since the pandemic affected the participation of the fans in the matches played at 
the stadium, I turned to another direction that can be analyzed - the performance of the 
players. Another less analyzed direction is the prevention of injuries. This side requires a 
history of players which is difficult to centralize without digitization. Rossi et al., (2018), 
using variables  such as  position, age, height, weight, gps coordinates, but also variables 
related to distance, speed, number of previous injuries and previously played matches 
analyzed the predisposition of 26 players in depending on the variables mentioned above. 
On the other hand, another study (Bongiovanni et al., 2020) using variables such as 
anthropometric features corrected arm muscle area, arm muscle circumference, right and 
left suprapatellar girths applied for the analysis of a football academy in Italy focused on 
physical performance prediction. Also in this direction, I included another research 
(Dijkhuis et al., 2021) to which we add the most replacements  in  the  50th  minute,  but  
also  in  the  60-90  interval,  position, acceleration, energy, distance cover, distance in 
speed category , energy expenditure in power category. 

Another facet of sports analysis is the accessibility of data that show the 
performance of football has facilitated recent advances in soccer analysis. The so- called 
football journals (Luke et al., 2018) which capture all the events that take place during a 
match, are one of the most common data formats and have been used to analyze many 
aspects of soccer,  both to the  team (Cintia et  al., 2016) and individual levels (Cintia et 
al., 2015). Of all the open issues in soccer analysis, the data-based assessment of a player's 
performance quality is the most difficult, given the lack of ground truth for that 
performance assessment and a consistency in adding or retrieving this information. 
 
Methodology 
 

The aim of the paper is to take into account the specialized papers in the field 
studied, sports prediction, and for this reason I want to analyze the most relevant studies 
especially in the technological context - models used in predictive. Using the relevant 
keywords in the Google Scholar and web of science engines, I identified the main 
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clarifications on the subject, according to their relevance with the subject. I will present 
continuously the results obtained using predictive models and then the main variables 
studied. 
 
Results 
 
Results related to predictive models used 

My focus is to identify papers from which I can extract information related to 
obtaining and analyzing predictive variables. If the results were used in the specialized 
studies or the data were trained to obtain predictions, and more importantly, where the data 
were extracted from, this being a rather big problem for research. In recent years, it has 
shown us that with the ever-increasing technology in our lives, more and more precise 
analyzes are needed. In this sense, sports analysis is interconnected with various camera 
devices, sensors, etc. One of the options for performing sports analysis is the video 
summary. Thus, small video slots can summarize the most important actions in a match. In 
addition to the frames needed to capture images, excitation event detection is also required 
(Zawbaa et al., 2012). In this sense, Bagadus was developed, a prototype that has a built-
in sensor that aims to create video summaries by calibrating the cameras to form a 
panorama (Stensland et al., 2014). Another approach refers to detecting the key points of a 
match related to different parameters such as: correspondence with the ball, time 
dependent, not directly dependent on the ball, etc. or on a player movement system (Stein 
et al., 2017). 

The introduction of tools and predictive models based on Machine Learning (ML) 
is another facet of the field. R is the language that covers data analysis, modeling and other 
operations based on statistical analysis, and according to a study by Kaggle 12% of 
respondents use this language  for Data Science activities, being in the  top 3 preferences 
(Data Science Survey, 2018). Two of the most popular classification and regression tree 
building techniques that are an  integral part of Machine Learning  are the Random  Forest 
(RF) and Extreme Gradient Boosting (XGB) models (Breiman et al., 1984). For Random 
Forest the models are created based on the tidymodels framework (Kuhn et al., 2020), and 
for Extreme Gradient Boosting using the xgboost package (Chen et al., 2020). In a paper 
that focused on creating a predictive model built on the weather variables of the day of the 
match, the stage of the match, but also the calculation of the performances of the two 
participating teams in the last 4 matches played was obtained in addition to a satisfactory 
accuracy of the variables that influence the sale of tickets to soccer matches. Following the 
analysis performed using both Random Forest and XGB algorithms, it was observed that 
the latter is much more accurate, giving a higher score to the season and the environmental 
conditions of the match day (Fotache et al., 2021). 
 
The main variables included in the studies 
 

The variables of a research differ depending on the goal to be achieved and the area 
of interest. In the following I will present both variables related to previous matches and 
variables obtained during the current match used in predicting the results. Some research 
has attempted to determine the prediction of the winner and the loser respectively, based 
on possession of the ball and the analysis of approximately 20 actions during the match 
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(Capobianco et al., 2019). Other papers focused on the classification of the most important 
variables analyzed, which resulted in over 60% accuracy for predicting the results of a 
match using Random Forest model (Igoshkin, 2014). For those who want to introduce 
statistical analyzes, Berrar et al. (2019) present the Poisson and Bayesian models used in 
predicting outcomes. A probabilistic movement and zones of control are taken into 
account, thus dividing the field. Depending on where the ball was in the field, they could 
later establish control areas. In this way they analyzed 40 different events. An example of 
a challenge regarding sports prediction is the 2017 SoccerPrediction Challenge proposed 
by Kaggle in which 68 teams competed for soccer outcome prediction. Some of the 
variables considered by the participating teams are: season, league, date, home team, 
opposing team, number of goals for each team, goal difference, previous matches for 
competing teams (Dubitzky et al., 2019). 

Regarding the obtaining of the data to be processed, two of the sites that offer free 
access are champinat.com which is easy to use to search for matches for each season and 
get information about form, focus and history by analyzing the match information page. 
Statoo.com is useful because it has a table for each time of the season, so the information 
is based on scores, positions, etc. can be exported in an easy way. Brooks et al. (2016) use 
the position and destination of a pass by analyzing passes, shots and tackles. Based on 
these, the individual strategy is determined, but also that of the team. The field is divided 
into 18 zones, and possession is determined by at least 3 passes between players of the 
same team. Because we follow the actions in a match, their number can be very high and 
their appearance low. For the Belgian Football Division, data were taken for 576 matches, 
of which approximately 100 actions were analyzed. In this case, VIF (variance inflation 
factor) was used to delete unimportant variables  (Geurkink, 2021). 
 
Conclusion and discussion 
 

The field of sports prediction is an important economic and social factor of regional 
development worldwide. Sports innovation is an emerging field of research that links sport 
with management and good innovation practices. Innovation in sports is seen in new 
technologies, equipment, strategies and training improvements, and to have this overview 
we used a documentary study on a limited number of articles. Content analysis has as main 
characteristics objectivity, systematic character by creating explicit rules and their 
consistent application, as well as a quantitative character by which it is desired to count 
some occurrences. Supporting these characteristics, I can affirm that there is a trend in the 
area of predictive analysis focused on team performance, to the detriment of fan-focused 
analysis. The main focus is on how to play inside football clubs and less on how fans can 
be attracted to matches, as the variables on which the first criterion depends are easier to 
adjust. I also noticed that the number of variables differed from research to research, but in 
essence all those analyzed took into account the selective variables, according to the place 
and performance of the host team and the guest team. The limitations of the research are 
represented by the establishment of a number of articles analyzed and was based on a 
syntax that applied to the four databases from which the analyzed articles were extracted. 
This research gives me the opportunity to formulate a future research direction through 
which I want to make a generally valid prediction model of the results for soccer matches 
using a list of variables identified in the research analyzed previously. 
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